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An Automatic Diagnostic System for CT Liver
Image Classification
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Abstract— Computed tomography (CT) images have been
widely used for liver disease diagnosis. Designing and developing
computer-assisted image processing techniques to help doctors
improve their diagnosis has received considerable interests
over the past years. In this paper, a CT liver image diagnostic
classification system is presented which will automatically find,
extract the CT liver boundary and further classify liver diseases.
The system comprises adetect-before-extract(DBE) system which
automatically finds the liver boundary and a neural network
liver classifier which uses specially designed feature descriptors
to distinguish normal liver, two types of liver tumors, hepatoma
and hemageoma. The DBE system applies the concept of the
normalized fractional Brownian motion model to find an initial
liver boundary and then uses a deformable contour model to
precisely delineate the liver boundary. The neural network is
included to classify liver tumors into hepatoma and hemageoma.
It is implemented by a modified probabilistic neural network
(PNN) [MPNN] in conjunction with feature descriptors which
are generated by fractal feature information and the gray-level
co-occurrence matrix. The proposed system was evaluated by 30
liver cases and shown to be efficient and very effective.

Index Terms—Fractal, liver boundary, probabilistic neural
network, segmentation.

I. INTRODUCTION

DUE to the advent of computer technology, image process-
ing techniques have become increasingly important in a

wide variety of applications. This is particularly true for med-
ical imaging such as ultrasonography, computed tomography
(CT), magnetic resonance image (MRI), and nuclear medicine
which can be used to assist doctors in diagnosis, treatment, and
research [1]. According to recent statistics [2], liver cancer
is one of leading cancerous diseases in Taiwan. Therefore,
designing and developing computer-aided diagnostic (CAD)
tools for liver cancer is of particular interest in Taiwan.
Thus far, the only definitive test for liver cancer is needle
biopsy. However, the needle biopsy is an invasive technique
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and generally not recommended unless there is an absolute
need. To avoid unnecessary needle biopsy, doctors can take
advantage of information provided by images acquired from
various medical imaging systems such as surface texture,
object boundary extraction, tumor detection, etc. to assist them
to improve their diagnosis. In this case, an effective image
analysis is important. Although many segmentation methods
have been successfully used in medical imaging, it has found
that most of them generally do not perform well in segmenting
the liver boundary from a CT liver image. This is mainly due
to the fact that there are other organs adjacent and close to the
liver which makes segmentation more difficult. In addition,
the liver itself may also contain tumors such as hepatoma
and hemageoma that can obscure the boundary. In order to
address these problems, we present an automatic CT liver
image classification system which can be used to detect two
types of liver tumor: hepatoma and hemageoma.

As a first step of extracting liver tumors, we need to
isolate or segment the liver boundary within a CT liver
image. A novel approach called the “detect-before-extract”
(DBE) technique is proposed for this purpose. Since the liver
is generally accompanied by other organs which presents
difficulties for liver boundary segmentation, DBE decomposes
the process into two stages. The first stage processing is
boundary detection and then followed by a second stage
processing, boundary extraction. The detection procedure can
be implemented as follows. It first transforms the original
CT liver image into a binary-valued normalized fractional
Brownian (NFB) feature bit map from which a region growing
technique is used to find an initial liver boundary. It is
generated by dividing an original image into a set of 1616
image blocks and assigning either a zero or one to each of
the image blocks. This binary value is determined according
to its corresponding NFB feature curve. More precisely, each
point in the feature bit map represents a 1616 image block.
A point assigned by a one indicates that its represented image
block is considered as part of the liver region. On the contrary,
a zero-value point means that its represented image block
is not part of the liver region. Using such zero-one NFB
feature bit map, an initial boundary of the liver region can
be delineated. Since each point in the NFB feature bit map
is actually a 16 16 image block, the detected initial liver
boundary needs to be interpolated back in the original image
domain. This interpolation is done by a Catmull–Rom-
spline. Since the interpolated liver contour may not be precise,
it is further refined and corrected by a deformable model. The
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resulting liver boundary will be considered to be the desired
liver boundary.

As soon as the desired liver boundary is generated, a
texture feature-based classification system is then applied
to discriminate two types of liver tumors: hepotoma and
hemageoma. The classification system is developed based on
a modified probabilistic neural network (PNN) [MPNN] clas-
sifier which includes the Kohonen self-organization algorithm
to reduce the number of training patterns. The inputs to the
MPNN are a set of feature descriptors that are generated
by gray-level co-occurrence matrices and a NFB motion
model. According to studies [3], it was found that statistically,
the hepatoma, a malignant tumor, is usually more coarse-
grained, while the hemageoma, a benign tumor, has more
homogeneous textures, though the texture difference in these
two types of disease images may not be easily observed by
human eyes. In addition, the hemageoma usually has higher
gray-level intensity and contrast than hepatoma. In order to
capture the unique texture characteristics of hepatoma and
hemageoma, several feature descriptors derived from NFB
motion model and co-occurrence matrix such as contrast,
homogeneity, entropy, and energy, are particularly designed
for this purpose. Finally, the proposed complete CT liver
image classification system combines the DBE system with
the MPNN classifier to achieve automatic liver boundary
extraction and liver tumor classification. In order to see the
effectiveness, the system is tested and evaluated by 30 liver
cases. The results are encouraging and show promise of the
system.

This paper is organized as follows. Section II reviews the
concept of the NFB motion model and defines the NFB
feature curves. Section III describes a novel idea, “detect-
before-extract” for liver boundary segmentation. Section IV
modifies the Specht’s PNN classifier to classify two types
of liver tumor: hepatoma and hemageoma. Finally, a brief
conclusion is included in Section V.

II. NORMALIZED FRACTIONAL BROWNIAN

MOTION MODEL FEATURE CURVES

The concept of fractal was first introduced by Mandelbrot
[4] who used it as an indicator of the surface roughness. It was
later applied by Pentland [5] to natural scene analysis and by
Keller [6] for textured image segmentation with the gray level
replaced by the fractal dimension (FD). In particular, the FD
has been used in image segmentation for an index to measure
surface roughness where different natural scenes such as
mountains, clouds, trees, and deserts generate different FD’s.
While the fractal concept is useful in various applications,
different fractal models were also proposed in the past. Among
them is the fractional Brownian motion (FBM) model [7]
which has shown promise. It represents random walks which
can be used to model the randomness reflected by organ
structures and inherent random noises. As a result, the FBM
model is a nature adoption in medical imaging for analysis.
For example, in [8] and [9], the feature vectors generated by
image blocks based on a NFB motion model were used to
classify normal and abnormal ultrasonic liver images.

A. Fractional Brownian Motion Model

In [4] Mandelbrot and Van Ness described FBM as a
nonstationary self-affine random process. Nonetheless, the
increments of FBM is a strict-sense stationary process, called a
fractional Gaussian noise (FGN) with probability distribution
given by a Gaussian random variable with zero mean and
variance specified by

(1)

where is a constant determined by and
is the FBM at random walk [4].

If the image intensity is described by the FBM model
with parameter , then the increment
is Gaussian distributed with zero mean and variance given by

, or more precisely

(2)

where denotes the statistical expectation operator and
is a constant. Equation (2) can be also rewritten as

(3)

where is also a constant determined by. Taking the
logarithm on both sides of (3), we obtain

(4)

Since both and are constants, we can plot
versus in the - domain. The resulting curve is
called the fractional Brownian feature curve. If the FBM can
be used to describe a surface,must be a constant for all .
The slope of the curve, denoted by, can be estimated by a
least squares linear regression. The FD of the image is then
obtained as . A smaller value of FD indicates a
smoother surface, while a larger means a rougher surface.

B. Normalized Fractional Brownian Feature Curves

As mentioned previously, the concept of FBM model has
been used in feature extraction to describe the roughness
of nature surface. Given an image , an inten-
sity difference vector of the image is defined asIDV
id id id where is the maximum possible scale

and id is defined as follows:

id

(5)
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Fig. 1. NFB feature curve obtained from our experimental result.

where all pixel pairs calculated in the absolute difference
in (5) are -pixel apart along horizontal, vertical, diagonal,
and asymmetric-diagonal directions. The NFB motion feature
vector NFB is then obtained from theIDV through (5).
Namely,NFB with

id id (6)

For an intensity surface described by the FBM,id
with a constant and

. If ,
is invariant to . This implies that is

invariant to any linear intensity transformation.
In this paper, the NFB motion feature vector will be used

to classify three types of regions in a CT liver image, normal
liver, hepatoma, and liver boundary (or complexity region).
An example is shown in Fig. 1 where three averaged NFB
feature curves were plotted for normal liver, hepatoma, and
liver boundary, respectively. Since the normal liver has smooth
texture, its corresponding curve is flat as expected. When a
liver area has hepatoma, the rough texture of hepatoma results
in a steep NFB curve. Because the boundary area usually
covers different organs, its texture is generally complex. There-
fore, the resulting NFB curve must have a very high slope
to represent such a phenomenon. Fig. 1 shows these three
curves are well separated. As a consequence, they can be used
for liver boundary segmentation and hepatoma/hemageoma
classification as will be seen in Sections III and IV. However,
for the purpose of quantitative study, we will use the NFB
feature values, which are calculated by the areas under the
NFB feature curves, rather than the curves themselves.

III. A D ETECT-BEFORE-EXTRACT

METHOD FOR FINDING LIVER BOUNDARY

Finding and detecting the boundary detection of CT liver
images is important in medical diagnosis. An accurate liver
boundary not only provides doctors with the liver contour
information, but also offers preliminary knowledge with which
doctors can determine whether or not further image processing
needs to be done such as filtering, enhancement, analysis and
three-dimensional visualization.

Since the liver is generally accompanied by other organs,
a direct liver-extraction approach without preprocessing may
also extract unwanted boundaries resulting from its adjacent
organs. In order to cope with this problem, we present a
two-stage algorithm for CT liver boundary detection, called

“detect-before-extract” process, viz., detection is done prior to
extraction. It decomposes the task of liver boundary extraction
into two functional procedures. The first stage is boundary
detection and the second stage is boundary extraction. More
specifically, the “detect” procedure is to find an initial silhou-
ette of the liver boundary by transforming an original image
into a binary-valued NFB feature bit map. It is then followed
by an “extract” procedure to interpolate and refine the ob-
tained initial liver contour and further extract the desired liver
boundary from the original image. Generally speaking, the first
stage of the “detect before extract” strategy can be thought of
as an initial liver contour finding procedure which uses the
NFB feature bit map in conjunction with a region growing
method to locate the initial liver boundary. The second stage
of the “detect before extract” strategy is a liver boundary
extraction process which applies a deformable contour model
to interpolate and refine the initial liver boundary obtained
in the first stage so that an accurate delineation of the liver
boundary can be extracted. This proposeddetect-before-extract
method has proven to be effective and efficient in most of our
experiments.

A. Initial Liver Boundary Detection

As mentioned previously, the purpose of finding the initial
liver boundary is to keep track of the liver boundary while
avoiding possible inclusion of unwanted objects. If the initial
contour is too far away from the liver boundary, it might
be very difficult to accurately extract the liver boundary. By
doing so, a texture-based region growing method is proposed
to automatically locate the initial liver contour. The idea is
to find unique texture features which can distinguish the liver
from other organs such as kidney, gastrointestinal tract, and
spinal cord, then use them as a base for region growing. These
features can be generated as follows.

First of all, a CT image is divided into regions,
where and . From a priori

knowledge, the liver cannot be located in the right-bottom area
of a liver image. So, the regions in this area cannot be part of
the liver and can be eliminated so as to reduce the search area
for liver boundary. Next, for each of the remaining regions

, two feature values will be calculated, the average gray
level, denoted by to form an average gray-level map (AG
map), and the average feature value, denoted by, obtained
from the NFB model to form an average feature map (AF
map).

Based on the results of Section II, each feature value
provides important information: normal liver or
hepatoma , or liver boundary (otherwise).
According to the values of in the AF map, each region

can be classified into one of three classes: normal liver
class, hepatoma class, or liver boundary class (or complexity
region). Let be the normal liver class containing all the
regions with , and be the hepatoma class
made up of regions with . For the normal
liver and hepatoma classes, their class means are calculated.
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Let be the mean of the normal liver class given by

where is the number of total regions belonging to the
normal liver class. Similarly

where is the number of total regions belonging to the
hepatoma class. Using the means of these two classes as
classification criteria, one can classify all considered regions
into either the liver region or nonliver region. If a region
is part of liver region, set . Otherwise, . As
a result, the original image will be transformed into an NFB
feature bit map. Each point of the map represents a region
(i.e., an image block) either belonging to the liver or not.
This liver/nonliver region classification procedure is briefly
described below.

Algorithm for Generating an NFB Feature Bit Map:
If & then ,

else if & then ,
otherwise .

where are tolerance thresholds to indicate how much
deviations to be allowed from class means.

Fig. 2(a) illustrates this feature bit map transformation.
Each point in the map represents a 1616 image block.
A point labeled by “1” indicates that the image block is
designated as part of the liver. As expected, the obtained
initial liver region is only a reduced-size silhouette of the
liver and may contain small hollows and narrow isthmuses
which result from the tumors and the interferences of other
organs inside the liver image. In order to take care of this
artifact problem, mathematical morphological operations are
applied to smooth the contours of an image, break narrow
isthmuses, and eliminate protrusions [10]. The structuring
elements to be used in the opening operation for morphological
dilation and erosion are particularly designed for this purpose
and defined in Fig. 3(a)–(d). The resulting liver region from
the opening operation is shown in Fig. 2(b). Comparing to
Fig. 2(a) without the opening operation, we can see that the
undesired effects have been removed or smoothed.

Since the liver region is represented by a value-based
NFB feature bit map, it must be converted back to the original
gray-level based image by interpolation. To emphasize the
difference between the original image and feature bit map,
the term “point” is reserved for an element in the NFB feature
map and “pixel” for an element in the original image. After
the NFB feature bit map of the liver region is generated,
an interpolation technique is needed to transform back the
obtained liver boundary points into liver boundary pixels in
the original image.

The proposed interpolation method is to first identify all
boundary points of the liver region in the NFB feature bit
map, then apply a Catmull–Rom B-spline to interpolate the
found NFB-feature value liver boundary to find an initial
liver boundary. A point is called a boundary point if any
neighborhood centered at contains at least one point with

(a)

(b)

Fig. 2. The feature bit maps before and after morphological operations. (a)
Before morphological operation. (b) After morphological operation. Each digit
in both maps represents a 16�16 image block of the original image. The
block labelled “1” is designated as a part of the liver.

value one as well as at least one point with value zero. (For
instance, a neighborhood can be viewed as a disc with center

and a positive integer radius .) Occasionally, it may be
the case that a point satisfies the boundary condition but occurs
in a hollow inside the liver area. So, this point will not be
considered to be a boundary point and will be removed. Using
these found boundary points from the NFB feature bit map
as interpolative points, an initial liver contour in the original
image can be generated by a Catmull–Rom B-spline. Since
a point in the NFB feature bit map is defined as an image
block, it will be regarded as the center of the block when
it is interpolated. As a result, the interpolated liver boundary
may slightly different from the original liver region. In order
to fix this problem, the liver boundary is dilated using the
structure elements given by Fig. 3(e)–(f) before interpolation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a)–(d) The structuring elements of morphological opening operations
used to break narrow isthmuses, eliminate protrusions and smooth the liver
contour as shown in Fig. 2. Parts (e) and (f) are the structuring elements of
morphological dilation operation used before the interpolation procedure.

Fig. 4 shows that the location of the liver region of a CT
image can be properly identified. However, the contour may
still slightly deviate from the actual boundary. In this case, a
deformable contour model is suggested to further adjust and
modify the liver boundary.

B. Contour Modification Using a Deformable Active Model

As noted above, the initial liver boundary contour inter-
polated by a B-spline only provides a preliminary knowledge
about the liver boundary. It needs to be refined and modified to
find the real and actual boundary. This can be done by using
a deformable contour model to iteratively correct the initial
liver boundary subject to a set of constraints. The constraints
required for the deformable contour model are determined by
1) the NFB feature curves of each pixel located at position

and 2) the difference between the gray level of the pixel
and the averaged gray level of the normal liver region,

i.e., the gradient value .
To implement this process, sample pixels are selected from

the initial liver contour with -pixel apart. For each sample
pixel, a one-dimensional search line segment centered at
this pixel is created and normal to the liver contour, i.e.,
perpendicular to the contour outward from the inside of the
liver (see Fig. 5 where represents a boundary pixel, an “”
represents an inner pixel and an “” is an outer pixel.) Each
search line segment has length of seven pixels and contains
three inner pixels labeled by’s and three outer pixels labeled
by ’s with respect to the contour as shown in Fig. 5. For

each pixel at position in the search line segment, its
corresponding NFB feature value, is calculated for contour
modification. The window to be used for the NFB feature
values is of size 7 7. Similarly, the window to be used for
its gradient value, calculated by the Sobel operator has size
3 3. In order to determine the best boundary pixel, denoted
by , in each search line segment, three constraints used for
a deformable model are prioritized in order as follows.

Constraints Prioritized in Order:Let be a tolerance
threshold.

1) The pixel is reset to the first pixel which satisfies
in the search line segment starting from the

innermost pixel to outer pixels.
2) The pixel is reset to the first pixel which satisfies

in the search line segment starting from
the innermost pixel to outer pixels.

3) The pixel is reset to the first pixel which satisfies
in the search line segment starting from the

innermost pixel to outer pixels. If all the pixels in the
search line segment do not satisfy this condition, the
pixel is set to the last outer pixel of the search line
segment.

SinceNFB feature values can detect the differences among
normal liver, hepatoma, and liver boundaries, the first con-
straint on the value is considered to be the most important.
Thus it will be used in the first iterative process to generate a
new contour that will be insensitive to hepatoma. The second
constraint on is used in the second iterative process to
separate the obtained liver contour from other organs. Finally,
the third constraint on the value is used in the third iterative
process to determine the precise location of liver boundary.
Furthermore, because the liver contour is generally smooth,
the sampled pixels must be properly selected. This can be
done by calculating the curvatures along the contour. If a part
of the contour has too large curvature, it will be replaced by an
interpolated curve using a Catmull–Rom B-spline. The points
used for interpolation are chosen to be the neighboring pixels
of the replaced contour. The contour is modified iteratively
with above prioritized constraints until the contour is stable.
The algorithm can be summarized as follows.

Algorithm for Contour Modification:

1) Select proper sample pixels with-pixel apart from the
initial liver contour.

2) Form a 7-pixel search line segment across every sample
pixel with three pixels inside and three pixels outside of
the liver contour.

3) Find the best fitting boundary pixel in each search line
segment in accordance with prioritized constraints.

4) Smooth the resulting liver contour from Step 3).
5) Interpolate the contour obtained by Step 4) using a

Catmull–Rom B-spline.
6) Repeat Steps 1)–5) until the contour is stable.

Fig. 6 shows the final liver contours for three patient cases.
The results show that the liver contours are accurately ex-
tracted and located. The segmentation results obtained by the
above algorithm are better than that by traditional methods.
In addition, in order to improve texture classification, the
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Fig. 4. Initial liver contours of three patients.

liver areas surrounded by contours are further enhanced by
histogram equalization. (see the examples shown in Fig. 7). It
is important to note that the whole process is automated.

IV. CLASSIFICATION FOR LIVER TUMORS

Using CT liver images as a diagnostic tool becomes in-
creasingly important in liver medical modalities. However, the
effectiveness is largely reduced due to a lack of applicable
image processing techniques. As a result, it still relies heavily
on experienced and skillful doctors. In order to improve
doctors’ diagnoses, a statistical texture classification system
using a MPNN [11] is suggested for classification of hepatoma
and hemageoma. The textures to be used for inputs of MPNN

are fractal features and features generated by various spa-
tial gray-level co-occurrence matrix (SGLCM)-based feature
descriptors.

A. Spatial Gray-Level Co-Occurrence Matrices

SGLCM has been widely used in texture classification
[9], [12]. Comparing to an image gray-level histogram, the
SGLCM is a second-order gray-level statistic which takes
into account the spatial correlation between a pair of two
gray levels. Specifically, let denote the transition
probability from gray level to gray level defined by
(7) shown at the bottom of the next page, where notation
“ ” denotes the angle between and
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Fig. 5. Search line segment.

indicates that and are -pixel apart,
# is the number of elements in the set, and are the
horizontal and vertical spatial domains, is the image
intensity at point , and is the total number of
pixel pairs in the image having angle with -pixel apart.
So, the SGLCM is defined as a matrix of which the

-th entry given by

(8)

where is the largest gray level used in the image.
From (9), if the texture of a surface is rough, the cor-

responding is nearly diagonal. This is because for
coarse textures pixel pairs separated at a small distance
usually have close gray levels which implies that
is high for . On the other hand, is sparse for fine
textures since neighboring pixel pairs generally have distinct
gray levels that can describe subtle differences in a small
neighborhood.

In what follows, a set of six texture feature descriptors are
generated based on and can be used as inputs to the
MPNN for classification.
Let

(9)

(10)

(11)

(12)

Then, the six texture feature descriptors are defined as follows.

1) Contrast:

con (13)

2) Energy:

(14)

3) Entropy:

(15)

4) Correlation:

(16)
5) Local Homogeneity:

(17)

6) Sum Entropy:

SE

where

with (18)

It should be noted that in all conducted experiments, we have
chosen and and .

B. Modified Probabilistic Neural Network (MPNN)

Neural networks have shown promise in pattern classifica-
tion and considered to be a potential alternative approach to

(7)
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Fig. 6. Final liver contours of three patients.

statistical pattern classification. They differ from conventional
approaches in that they possess learning capability and adapts
themselves to rapid changing environments. Various models
for neural networks have been studied in the literature, each
of which has its own merit depending upon applications. Of
particular interest is Specht’s PNN [11] which is a Bayesian
classifier and can be considered to be an optimal classifier in
terms of the minimization of total misclassification risk.

In Specht’s approach, the sigmoid activation function was
replaced with an exponential function to realize a statistical
nonlinear decision function. Let be sample
patterns belonging to a class and independent realizations of
a random variable with the probability measure given by

. Assume that the cumulative distribution function
is absolutely continuous. If is Gaussian dis-

tributed, the probability density function of a two-dimensional
random vector is given by

(19)

The parameter used in (19) is a smooth parameter used
to describe the sharpness of each sample pattern distribution.
According to Specht’s PNN, each sample pattern requires a
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. The images before and after histogram equalization. (a), (c), and (e) Before histogram equalization. (b), (d), and (f) After histogram equalization.

node, i.e., represents a realization of one cluster. Therefore, as
the number of training samples increases, so does the network
size. This eventually makes the network prohibitive in practical
applications. As such, Specht’s PNN is slightly modified for

this purpose by including a clustering algorithm into network
design. Different patterns with slight variations in a class are
grouped into clusters by means of the Kohonen learning rule.
A similar approach was also suggested in [13].
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Fig. 8. The network for classification of patterns into two categories.f1(X)
is the probability ofX belonging to class 1—Hepatoma.f2(X) is the
probability ofX belonging to class 2—Hemageoma.X is the input vector
which denotes the pattern.

For an input pattern belonging to class, a winning clus-
ter is selected from classbased on the following criterion:

(20)

where represents the weight vector of clusterin class .
In order to ensure that the winning cluster can legitimately

represent the pattern , the similarity distance defined by
(20) between and needs to be further examined. If
the distance exceeds a prescribed threshold, the clusterwill
be chosen to be the representative of; otherwise, will
be considered as a new cluster center and a new neuron will
be assigned to it.

For a winning cluster , the Kohonen learning rule adjusts
its weight vector according to the following equation given by

(21)

The probability density function of class is a mixture of
probability density functions each of which representing a
probability density of one winning cluster with nonnegative
mixing factor . If the probability distributions are Gaussian,
the defined probability distribution is known as a Gaussian
mixture. Based on the mixture probability distribution, the
decision can be easily made by choosing the class with the
maximum probability, i.e., maximum likelihood estimation.
Fig. 8 shows the network architecture for classification of input
patterns into two categories-hepatoma and hemageoma.

C. Experimental Results

All the CT images used in the following experiments were
acquired from the hospital of National Cheng Kung University
(NCKU) by a GE 9800Q CT scanner at spatial resolution
10 mm and were stored in a 486/33-Hz PC. Each acquired
image has the spatial resolution of 320320 pixels with

TABLE I
CONFUSION MATRIX IN THE CT LIVER CLASSIFICATION

12 bits representing 4096 gray levels. All the hepatoma cases
considered in this experiment were validated by needle biopsy
and all the hemageoma cases were followed up for more than
two years. The algorithms used were written by C language.
Fig. 9(a) and (c) shows the images having hepatoma and
hemageoma, respectively, while Fig. 9(b) and (d) shows their
corresponding NFB curves. For each acquired image, a block
of 16 16 pixels is selected to produce an NFB feature bit
map. All the texture feature descriptors used for classification
are described in Section III. From our experiments, it has been
found that the features obtained from NFB motion, i.e., the
shape vector of the NFB curve is the best among all the feature
descriptors described by (13)–(18). The shape vector of the
NFB curve is defined asSV where
is the maximum possible scale and is the area between

and under the NFB curve. In order to reduce the effect
of blocking artifacts resulting from the noise in the block or
the inhomogenity of the block, the NFB curve is calculated
by averaging its four neighboring blocks. The correlation and
sum entropy of SGLCM defined by (16) and (18) show better
performance than the other feature descriptors. As a result,
these three feature descriptors, i.e., shape vector of the NFB,
correlation of SGLCM, and sum entropy of SGLCM were
used as inputs to MPNN for classification of hepatoma and
hemageoma. In the MPNN, all the features obtained from
NFB, correlation and sum entropy are normalized.

The determination of the parameter is also important in
classification. Since only two groups need to be classified,
a larger value of was used in our experiments. The data
used in the experiments comprises 20 patients with hepatoma
and ten patients with hemageoma. The classification rate is
about 83%. The confusion matrix is given in Table I. Some
misclassifications have nothing to do with the proposed system
but result from tumors which are smaller than a 1616 block
size. This is due to the fact that the block size used to generate
the NFB feature bit map is too large. So, the classification rate
can be increased by reducing the block size.

V. CONCLUSION

A system based on fractal geometry and MPNN was de-
veloped for the CT liver image classification. The system
consists of an automatic liver contour extraction process, an
image enhancement algorithm and a hepatoma/hemageoma
classification network. During the process of liver contour
extraction, the liver area is first located using the fractal
feature values, then followed by a deformable contour model
to iteratively generate the accurate liver contour. With the
help of the deformable contour model, the liver contour
can precisely be extracted. After the liver area is extracted,
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(a) (c)

(b) (d)

Fig. 9. The hepatoma and hemageoma images and their NFB curves. (a) The image of hepatoma. (b) The NFB curve of the selected hepatoma block in (a),
and�x = pixel distance. (c) The image of hemageoma. (d) The NFB curve of the selected hemageoma block in (c), and�x = pixel distance.

it will be further enhanced for future feature texture-based
classification. Our experiments show that using the NFB
feature values, the correlation and sum entropy of the spatial
gray-level dependence matrices in conjunction with a MPNN
has better performance in classification than using other feature
descriptors in MPNN. It should be noted that the MPNN used
in this paper is not necessarily optimal in all applications. It can
be replaced by any classification system as long as it performs
better than MPNN. This shows that the designed system is
object-oriented. In other words, any component in the system
can be replaced by a better system if there exists one.
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